Выше были рассмотрены операции с простыми переменными. Однако с их помощью сложно описывать сложные данные, такие как случайный сигнал, поступающий на вход фильтра или хранить кадр изображения и т.п. Поэтому в языках высокого уровня предусмотрена возможность хранить значения в виде массивов. В MatLab эту роль выполняют векторы и матрицы.

Ниже показан пример задания вектора с именем a, и содержащий значения 1, 2, 3, 4:

a = ; % вектор-строка

Для доступа к тому или иному элементу вектора используется следующая конструкция языка:

disp(a(1)); % отображение значения 1-го элемента вектора
disp(a(2)); % отображение значения 2-го элемента вектора
disp(a(3)); % отображение значения 3-го элемента вектора
disp(a(4)); % отображение значения 4-го элемента вектора

т.е. нужно указать имя вектора и в круглых скобках написать номер индекса элемента, с которым предполагается работать. Например, для изменения значения 2-го элемента массива на 10 достаточно записать

a(2) = 10; % изменение значения 2-го элемента на 10

Часто возникает необходимость определения общего числа элементов в векторе, т.е. определения его размера. Это можно сделать, воспользовавшись функцией length() следующим образом:

N = length(a); % (N=4) число элементов массива а

Если требуется задать вектор-столбец, то это можно сделать так

a = ; % вектор-столбец

b = ’; % вектор-столбец

при этом доступ к элементам векторов осуществляется также как и для векторов-строк.

Следует отметить, что векторы можно составлять не только из отдельных чисел или переменных, но и из векторов. Например, следующий фрагмент программы показывает, как можно создавать один вектор на основе другого:

a = ; % начальный вектор a =
b = ; % второй вектор b =

Здесь вектор b состоит из шести элементов и создан на основе вектора а. Используя этот прием, можно осуществлять увеличение размера векторов в процессе работы программы:

a = ; % увеличение вектора а на один элемент

Недостатком описанного способа задания (инициализации) векторов является сложность определения векторов больших размеров, состоящих, например, из 100 или 1000 элементов. Чтобы решить данную задачу, в MatLab существуют функции инициализации векторов нулями, единицами или случайными значениями:

a1 = zeros(1, 100); % вектор-строка, 100 элементов с
% нулевыми значениями
a2 = zeros(100, 1); % вектор-столбец, 100 элементов с
% нулевыми значениями
a3 = ones(1, 1000); % вектор-строка, 1000 элементов с
% единичными значениями
a4 = ones(1000, 1); % вектор-столбец, 1000 элементов с
% единичными значениями
a5 = rand(1000, 1); % вектор-столбец, 1000 элементов со
% случайными значениями

Матрицы в MatLab задаются аналогично векторам с той лишь разницей, что указываются обе размерности. Приведем пример инициализации единичной матрицы размером 3х3:

E = ; % единичная матрица 3х3

E = ; % единичная матрица 3х3

Аналогичным образом можно задавать любые другие матрицы, а также использовать приведенные выше функции zeros(), ones() и rand(), например:

A1 = zeros(10,10); % нулевая матрица 10х10 элементов

A2 = zeros(10); % нулевая матрица 10х10 элементов
A3 = ones(5); % матрица 5х5, состоящая из единиц
A4 = rand(100); % матрица 100х100, из случайных чисел

Для доступа к элементам матрицы применяется такой же синтаксис как и для векторов, но с указанием строки и столбца где находится требуемый элемент:

A = ; % матрица 3х3
disp(A(2,1)); % вывод на экран элемента, стоящего во
% второй строке первого столбца, т.е. 4
disp(A(1,2)); % вывод на экран элемента, стоящего в
% первой строке второго столбца, т.е. 2

Также возможны операции выделения указанной части матрицы, например:

B1 = A(:,1); % B1 = – выделение первого столбца
B2 = A(2,:); % B2 = – выделение первой строки
B3 = A(1:2,2:3); % B3 = – выделение первых двух
% строк и 2-го и 3-го столбцов матрицы А.

Размерность любой матрицы или вектора в MatLab можно определить с помощью функции size(), которая возвращает число строк и столбцов переменной, указанной в качестве аргумента:

a = 5; % переменная а
A = ; % вектор-строка
B = ; % матрица 2х3
size(a) % 1х1
size(A) % 1х3
size(B) % 2х3

Язык технических вычислений

Миллионы инженеров и ученых во всем мире используют MATLAB ® , чтобы анализировать и разработать системы и продукты, преобразовывающие наш мир. Матричный язык MATLAB является самым естественным способом в мире выразить вычислительную математику. Встроенная графика облегчает визуализацию и понимание данных. Окружение рабочего стола способствует экспериментированию, исследованиям и открытиям. Эти средства MATLAB и возможности все строго протестированы и разработаны, чтобы работать совместно.

MATLAB помогает вам воплощать свои идеи за пределами рабочего стола. Можно запустить исследования больших наборов данных и масштабировать до кластеров и облаков. Код MATLAB может быть интегрирован с другими языками, позволив вам развернуть алгоритмы и приложения в сети, предприятии и промышленных системах.

Начало работы

Изучите основы MATLAB

Основы языка

Синтаксис, индексация и обработка массива, типы данных, операторы

Импорт и анализ данных

Импорт и экспорт данных, в том числе и больших файлов; предварительная обработка данных, визуализация и исследования

Математика

Линейная алгебра, дифференцирование и интегрирование, преобразования Фурье и прочая математика

Графика

2D и 3D графики, изображения, анимация

Программирование

Скрипты, функции и классы

Создание приложений

Разработка приложений с помощью App Designer, программируемого рабочего процесса или GUIDE

Инструменты разработки программного обеспечения

Отладка и тестирование, организация крупных проектов, интеграция с системой контроля версий, упаковка тулбоксов

Язык технических вычислений

Миллионы инженеров и ученых во всем мире используют MATLAB ® , чтобы анализировать и разработать системы и продукты, преобразовывающие наш мир. Матричный язык MATLAB является самым естественным способом в мире выразить вычислительную математику. Встроенная графика облегчает визуализацию и понимание данных. Окружение рабочего стола способствует экспериментированию, исследованиям и открытиям. Эти средства MATLAB и возможности все строго протестированы и разработаны, чтобы работать совместно.

MATLAB помогает вам воплощать свои идеи за пределами рабочего стола. Можно запустить исследования больших наборов данных и масштабировать до кластеров и облаков. Код MATLAB может быть интегрирован с другими языками, позволив вам развернуть алгоритмы и приложения в сети, предприятии и промышленных системах.

Начало работы

Изучите основы MATLAB

Основы языка

Синтаксис, индексация и обработка массива, типы данных, операторы

Импорт и анализ данных

Импорт и экспорт данных, в том числе и больших файлов; предварительная обработка данных, визуализация и исследования

Математика

Линейная алгебра, дифференцирование и интегрирование, преобразования Фурье и прочая математика

Графика

2D и 3D графики, изображения, анимация

Программирование

Скрипты, функции и классы

Создание приложений

Разработка приложений с помощью App Designer, программируемого рабочего процесса или GUIDE

Инструменты разработки программного обеспечения

Отладка и тестирование, организация крупных проектов, интеграция с системой контроля версий, упаковка тулбоксов

Все данные MatLab представляет в виде массивов. Очень важно правильно понять, как использовать массивы. Без этого невозможна эффективная работа в MatLab, в частности построение графиков, решение задач линейной алгебры, обработки данных, статистики и многих других. В данном подразделе описаны вычисления с векторами.

Массив - упорядоченная, пронумерованная совокупность однородных данных. У массива должно быть имя. Массивы различаются по числу размерностей или измерений: одномерные, двумерные, многомерные. Доступ к элементам осуществляется при помощи индекса. В MatLab нумерация элементов массивов начинается с единицы. Это значит, что индексы должны быть больше или равны единице.

Важно понять, что вектор, вектор-строка или матрица являются математическими объектами, а одномерные, двумерные или многомерные массивы - способы хранения этих объектов в компьютере. Всюду дальше будут использоваться слова вектор и матрица, если больший интерес представляет сам объект, чем способ его хранения. Вектор может быть записан в столбик (вектор-столбец) и в строку (вектор-строка). Вектор-столбцы и вектор-строки часто будут называться просто векторами, различие будет сделано в тех случаях, если важен способ хранения вектора в MatLab. Векторы и матрицы обозначаются курсивом, а соответствующие им массивы прямым моноширинным шрифтом, например: "вектор а содержится в массиве а", "запишите матрицу R в массив r".

Ввод сложение и вычитание векторов

Работу с массивами начнем с простого примера - вычисления суммы векторов:
, .

Для хранения векторов используйте массивы а и b. Введите массив а в командной строке, используя квадратные скобки и разделяя элементы вектора точкой с запятой:

» a =
a =
1.3000
5.4000
6.9000

Так как введенное выражение не завершено точкой с запятой, то пакет MatLab автоматически вывел значение переменной а. Введите теперь второй вектор, подавив вывод на экран

» b = ;

Для нахождения суммы векторов используется знак +. Вычислите сумму, запишите результат в массив с и выведите его элементы в командное окно:

» с = а + b
с =
8.4000
8.9000
15.1000

Узнайте размерность и размер массива а при помощи встроенных функций ndims и size:

» ndims(a)
ans =
2
» size(a)
ans =
3 1

Итак, вектор а хранится в двумерном массиве а размерностью три на один (вектор-столбец из трех строк и одного столбца). Аналогичные операции можно проделать и для массивов b и c . Поскольку числа в пакете MatLab представляются в виде двумерного массива один на один, то при сложении векторов используется тот же знак плюс, что и для сложения чисел.

Ввод вектор-строки осуществляется в квадратных скобках, однако элементы следует разделять пробелами или запятыми. Операции сложения, вычитания и вычисление элементарных функций от вектор-строк производятся так же, как и с вектор-столбцами, в результате получается вектор-строка того же размера, что и исходные. Например:

» s1 =
s1 =
3 4 9 2
» s2 =
s1 =
5 3 3 2
» s3 = s1 + s2
s3 =
8 7 12 4

Замечание 1

Если размеры векторов, к которым применяется сложение или вычитание, не совпадают, то выдается сообщение об ошибке.

Естественно, для нахождения разности векторов следует применять знак минус, с умножением дело обстоит несколько сложнее.
Введите две вектор-строки:

» v1 = ;
» v2 = ;

Операция.* (не вставляйте пробел между точкой и звездочкой!) приводит к поэлементному умножению векторов одинаковой длины. В результате получается вектор с элементами, равными произведению соответствующих элементов исходных векторов:

» u = v1.*v2
u =
14 -15 -24 9

При помощи.^ осуществляется поэлементное возведение в степень:

» р = v1.^2
p =
4 9 16 1

Показателем степени может быть вектор той же длины, что и возводимый в степень. При этом каждый элемент первого вектора возводится в степень, равную соответствующему элементу второго вектора:

» p = vl.^v2
Р =
128.0000 -243.0000 0.0002 1.0000

Деление соответствующих элементов векторов одинаковой длины выполняется с использованием операции./

» d = v1./v2
d =
0.2857 -0.6000 -0.6667 0.1111

Обратное поэлементное деление (деление элементов второго вектора на соответствующие элементы первого) осуществляется при помощи операции.\

» dinv = vl.\v2
dinv =
3.5000 -1.6667 -1.5000 9.0000

Итак, точка в MatLab используется не только для ввода десятичных дробей, но и для указания того, что деление или умножение массивов одинакового размера должно быть выполнено поэлементно.
К поэлементным относятся и операции с вектором и числом. Сложение вектора и числа не приводит к сообщению об ошибке. MatLab прибавляет число к каждому элементу вектора. То же самое справедливо и для вычитания:

» v = ;
» s = v + 1.2
s =
5.2000 6.2000 9.2000 11.2000
» r = 1.2 - v
r =
-2.8000 -4.8000 -6.8000 -8.8000
» r1 = v - 1.2
r1 = 2.8000 4.8000 6.8000 8.8000

Умножать вектор на число можно как справа, так и слева:

» v = ;
» p = v*2
р =.
8 12 16 20
» pi = 2*v
pi =
8 12 16 20

Делить при помощи знака / можно вектор на число:

» р = v/2
p =
2 3 4 5

Попытка деления числа на вектор приводит к сообщению об ошибке:

» р = 2/v
??? Error using ==> /
Matrix dimensions must agree.

Если требуется разделить число на каждый элемент вектора и записать результат в новый вектор, то следует использовать операцию./

» w = ;
» d = 12./w
d =
3 6 2

Все вышеописанные операции применимы как к вектор-строкам, так и к вектор-столбцам.
Особенность MatLab представлять все данные в виде массивов является очень удобной. Пусть, например, требуется вычислить значение функции sin сразу для всех элементов вектора с (который хранится в массиве с) и записать результат в вектор d. Для получения вектора d достаточно использовать один оператор присваивания:

» d = sin(с)
d =
0.8546
0.5010
0.5712

Итак, встроенные в MatLab элементарные функции приспосабливаются к виду аргументов; если аргумент является массивом, то результат функции будет массивом того же размера, но с элементами, равными значению функции от соответствующих элементов исходного массива. Убедитесь в этом еще на одном примере. Если необходимо найти квадратный корень из элементов вектора d со знаком минус, то достаточно записать:

» sqrt(-d)
ans =
0 + 0.9244i
0 + 0.7078i
0 + 0.7558i

Оператор присваивания не использовался, поэтому пакет MatLab записал ответ в стандартную переменную ans.

Для определения длины вектор-столбцов или вектор-строк служит встроенная функция length:

» length(s1)
ans =
4

Из нескольких вектор-столбцов можно составить один, используя квадратные скобки и разделяя исходные вектор-столбцы точкой с запятой:

» v1 = ;
» v2 = ;
» v =
v =
1
2
3
4
5

Для сцепления вектор-строк также применяются квадратные скобки, но сцепляемые вектор-строки отделяются пробелами или запятыми:

» v1 = ;
» v2 = ;
» v =
v =
1 2 3 4 5

Работа с элементами векторов

Доступ к элементам вектор-столбца или вектор-строки осуществляется при помощи индекса, заключаемого в круглые скобки после имени массива, в котором хранится вектор. Если среди переменных рабочей среды есть массив v, определенный вектор-строкой

» v = ;

то для вывода, например его четвертого элемента, используется индексация:

» v(4)
ans =
8.2000

Появление элемента массива в левой части оператора присваивания приводит к изменению в массиве

» v(2) = 555
v =
1.3000 555.0000 7.4000 8.2000 0.9000

Из элементов массива можно формировать новые массивы, например

» u =
u =
7.4000
555.0000
1.3000

Для помещения определенных элементов вектора в другой вектор в заданном порядке служит индексация при помощи вектора . Запись в массив w четвертого, второго и пятого элементов v производится следующим образом:

» ind = ;
» w = v(ind)
w =
8.2000 555.0000 0.9000

MatLab предоставляет удобный способ обращения к блокам последовательно расположенных элементов вектор-столбца или вектор-строки. Для этого служит индексация при помощи знака двоеточия. Предположим, что в массиве w , соответствующем вектор-строке из семи элементов, требуется заменить нулями элементы со второго по шестой. Индексация при помощи двоеточия позволяет просто и наглядно решить поставленную задачу:

» w = ;
» w(2:6) = 0;
» w
w =
0.1000 0 0 0 0 0 9.8000

Присваивание w(2:6) = 0 эквивалентно последовательности команд
w(2) = 0; w(3)=0; w(4)=0; w(5)=0; w(6)=0.
Индексация при помощи двоеточия оказывается удобной при выделении части из большого объема данных в новый массив:

» w - ;
» wl = w(3:5)
wl =
3.3000 5.1000 2.6000

Составьте массив w2, содержащий элементы w кроме четвертого. В этом случае удобно использовать двоеточие и сцепление строк:

» w2 =
w2 =
0.1000 2.9000 3.3000 2.6000 7.1000 9.8000

Элементы массива могут входить в выражения. Нахождение, например среднего геометрического из элементов массива u , можно выполнить следующим образом:

» gm = (u(l)*u(2)*u(3))^(l/3)
gm =
17.4779

Конечно, этот способ не очень удобен для длинных массивов. Для того чтобы найти среднее геометрическое, необходимо набрать в формуле все элементы массива. В MatLab существует достаточно много специальных функций, облегчающих подобные вычисления.

Применение функций обработки данных к векторам

Перемножение элементов вектора-столбца или вектора-строки осуществляется при помощи функции prod:

» z = ;
» р = prod(z)
p = 720

Функция sum предназначена для суммирования элементов вектора. С ее помощью нетрудно вычислить среднее арифметическое элементов вектора z:

» sum(z)/length(z)
ans =
3.5000

В MatLab имеется и специальная функция mean для вычисления среднего арифметического:

» mean(z)
ans =
3.5000

Для определения минимального и максимального из элементов вектора служат встроенные функции min и max:

» m1 = max(z)
m1 =
6
» m2 = min(z)
m2 =
1

Часто необходимо знать не только значение минимального или максимального элемента в массиве, но и его индекс (порядковый номер). В этом случае встроенные функции min и max необходимо использовать с двумя выходными аргументами, например

» = min(z)
m =
1
k =
3

В результате переменной m будет присвоено значение минимального элемента массива z, а номер минимального элемента занесен в переменную k.
Для получения информации о различных способах использования функций следует набрать в командной строке help и имя функции. MatLab выведет в командное окно всевозможные способы обращения к функции с дополнительными пояснениями.
В число основных функций для работы с векторами входит функция упорядочения вектора по возрастанию его элементов sort.

» r = ;
» R = sort(r)
R =

Можно упорядочить вектор по убыванию, используя эту же функцию sort :

» R1 = -sort(-r)
R1 =
9.4000 7.1000 1.3000 0.8000 -2.3000 -5.2000

Упорядочение элементов в порядке возрастания их модулей производится с привлечением функции abs:

» R2 = sort(abs(r))
R2 =
0.8000 1.3000 2.3000 5.2000 7.1000 9.4000

Вызов sort с двумя выходными аргументами приводит к образованию массива индексов соответствия элементов упорядоченного и исходного массивов:

» = sort(r)
rs =
-5.2000 -2.3000 0.8000 1.3000 7.1000 9.4000
ind =
3 2 5 6 4 1

Урок №13.

Многомерные массивы

    Понятие о многомерных массивах

    Применение оператора «:» в многомерных массивах

    Доступ к отдельному элементу многомерного массива

    Удаление размерности в многомерном массиве

    Создание страниц, заполненных константами и случайными числами

    Объединение массивов

    Вычисление числа размерностей массива и определение размера размерностей

    Перестановки размерностей массивов

    Сдвиг размерностей массивов

    Удаление единичных размерностей

В этом уроке мы коснемся вопросов, связанных с более сложными типами данных, к которым относятся многомерные массивы.

Понятие о многомерных массивах

В MATLAB двумерный массив является частным случаем многомерного массива. Многомерные массивы характеризуются размерностью более двух. Таким массивам можно дать наглядную интерпретацию. Так, матрицу (двумерный массив) можно записать на одном листе бумаги в виде строк и столбцов, состоящих из элементов матрицы. Тогда блокнот с такими листками можно считать трехмерным массивом, полку в шкафу с блокнотами - четырехмерным массивом, шкаф со множеством полок - пятимерным массивом и т. д. В этой книге практически нигде, кроме этого раздела, мы не будем иметь дело с массивами, размерность которых выше двух, но знать о возможностях MATLAB в части задания и применения многомерных массивов все же полезно.

В нашей литературе понятия «размер» и «размерность» массивов являются почти синонимами. Однако они имеют явно разный смысл в данной книге, как и в документации и литературе по системе MATLAB. Под размерностью массивов понимается число измерений в пространственном представлении массивов, а под размером - число строк и столбцов (mxn) в каждой размерности массива.

Применение оператора «:» в многомерных массивах

При обычном задании массивов (с помощью символа точки с запятой «;») число рядов (строк) массива получается на 1 больше, чем число символов «:», но массив остается двумерным. Оператор «:» (двоеточие) позволяет легко выполнять операции по увеличению размерности массивов. Приведем пример формирования трехмерного массива путем добавления новой страницы. Пусть у нас задан исходный двумерный массив М размером 3x3:

» М=

М =

1 2 3

4 5 6

7 8 9

Для добавления новой страницы с тем же размером можно расширить М следующим образом:

» М(:.:.2)=

M(:.:.l) =

1 2 3

4 5 6

7 8 9

М(:.:.2) =

10 11 12

13 14 15

16 17 18

Посмотрим, что теперь содержит массив М при явном его указании:

» М

М(:,:.1)=

1 2 3

4 5 6

7 8 9

М(:.:.2) =

10 11 12

13 14 15

16 17 18

Как можно заметить, числа в выражениях М(:.:, 1) и М(:,: ,2) означают номер страницы.

Доступ к отдельному элементу многомерного массива

Чтобы вызвать центральный элемент сначала первой, а затем второй страницы, надо записать следующие выражения:

» М(2.2,1)

Ans =

» МС2.2.2)

Ans =

Таким образом, в многомерных массивах используется то же правило индексации, что и в одномерных и двумерных. Произвольный элемент, например, трехмерного массива задается как М(1 .j.k), где 1 - номер строки, j - номер столбца и k - номер страницы. Этот элемент можно вывести, а можно присвоить ему заданное значение х: М(1 ,j,k)=x.

Удаление размерности в многомерном массиве

Мы уже отмечали возможность удаления отдельных столбцов присвоением им значений пустого вектора-столбца . Этот прием нетрудно распространить на страницы и вообще размерности многомерного массива. Например, первую страницу полученного массива М можно удалить следующим образом:

» М(:.:.1)=

М =

10 11 12

13 14 15

16 17 18

Нетрудно заметить, что в этом массиве осталась только вторая страница и что размерность массива уменьшилась на 1 - он стал двумерным.

Создание страниц, заполненных константами и случайными числами

Если после знака присваивания стоит численная константа, то соответствующая часть массива будет содержать элементы, содержащие данную константу. Например, создадим из массива М (см. пример выше) массив, у которого вторая страница содержит единицы:

»M(:.:..2)=1

М(:.:,1) =

10 11 12

13 14 15

16 17 18

М(:.:.2) =

1 1 1

1 1 1

1 1 1

А теперь заменим первую страницу массива на страницу с нулевыми элементами:

»M(:.:.1)=0

M(:.:.1)=

0 0 0

0 0 0

0 0 0

М(:.:,2) =

1 1 1

1 1 1

1 1 1

Использование функций ones, zeros, rand и randn

Функции ones (создание массивов с единичными элементами), zeros (создание массивов с нулевыми элементами) и rand или randn (создание массивов с элементами - случайными числами с соответственно равномерным и нормальным распределением) могут также использоваться для создания многомерных массивов. Примеры приводятся ниже:

» E=ones(3.3.2)

E(:.:.1)=

1 1 1

1 1 1

1 1 1

E(:.:,2) =

1 1 1

1 1 1

1 1 1

» Z=zeros(2,2,3) Z(:,:.l) =

Z(:.:.2) =

Z(:.:,3) =

» R=randn(3,2.2) R(:.:.l) =

1.6656-1.1465

0.1253 1.1909

0.2877 1.1892

R(:.:,2) =

0.0376-0.1867

0.3273 0.7258

0.1746 -0.5883

Эти примеры достаточно очевидны и не требуют особых комментариев. Обратите, однако, внимание на легкость задания размеров массивов для каждой размерности. Кроме того, следует отметить, что если хотя бы одна размерность массива равна нулю, то массив будет пустым:

» A=randn(3,3,3,0)

А =

Empty array: 3-bу-3-bу-3-by-0

Как видно из данного примера, пустой массив возвращается с соответствующим комментарием.

Объединение массивов

Для создания многомерных массивов служит описанная ранее для матриц специальная функция конкатенации cat:

    cat(DIM,A,B) - возвращает результат объединения двух массивов А и В вдоль размерности DIM;

    cat(2.A.B) - возвращает массив [А.В], в котором объединены ряды (горизонтальная конкатенация);

    cat(1, А.В) - возвращает массив [А:В], в котором объединены столбцы (вертикальная конкатенация);

    B=cat(DIM.Al,A2,...) - объединяет множество входных массивов Al, A2,... вдоль размерности DIM.

Функции cat(DIM,C{:}) и cat(DIM.C.FIELD) обеспечивают соответственно конкатенацию (объединение) ячеек массива ячеек (см урок 15) или структур массива структур (см. урок 14), содержащих числовые матрицы, в единую матрицу. Ниже приводятся примеры применения функции cat:

» М1=

» М2=

М2 =

» catd.Ml.M2)

Ans =

5 б

» cat(2.Ml.M2)

ans=

1 2 5 6

3 4 7 8

» M-cat(3.Ml.M2) M(:,:.l) =

М(:,:,2) =

Работа с размерностями

Вычисление числа размерностей массива

Функция ndims(A) возвращает размерность массива А (если она больше или равна двум). Но если входной аргумент - массив Java или массив массивов Java, то независимо от размерности массива эта функция вернет 2. Следующий пример иллюстрирует применение функции ndims:

» M=rand(2:3:4:5):

» ndims(M)

Ans =

4
Вычисление размера размерности массива

Для вычисления размера каждой размерности массива используется функция size:

    М = size(A.DIM) возвращает размер размерности, указанной скаляром DIM, в виде вектора-строки размером 2. Для двумерного или одномерного массива А size(A.l) возвращает число рядов, a size (А, 2) - число столбцов;

Для N-мерных массивов А при n>2 size(A) возвращает N-мерный вектор-строку, отражающий страничную организацию массива, последняя составляющая этого вектора равна N. В векторе отсутствуют данные о единичных размерностях (тех, где расположены вектор-строка или вектор-столбец, т. е. size(A,DIM)==l). Исключение представляют N-мерные массивы Java массивов javaarray, которые возвращают размер массива самого высокого уровня.

Вообще, когда входным аргументом size является javaarray, то возвращаемое число столбцов всегда 1, а число рядов (строк) равно размеру (длине) javarray.

    Si ze(A) возвращает размер первых N размерностей массива А;

    D = size (А), для mxn матрицы А возвращает двухэлементный вектор-строку, в котором первая составляющая - число строк т, а вторая составляющая - число столбцов n;

    Size(A) возвращает число рядов и столбцов в разных выходных параметрах (выходных аргументах в терминологии MATLAB) тип.

Перестановки размерностей массивов

Если представить многомерный массив в виде страниц, то их перестановка является перестановкой размерностей массива. Для двумерного массива перестановка часто означает транспонирование - замену строк столбцами и наоборот. Следующие функции обобщают транспонирование матриц для случая многомерных массивов и обеспечивают перестановку размерностей многомерных массивов:

    Permute (A, ORDER) - переставляет размерности массива А в порядке, определяемом вектором перестановок ORDER. Вектор ORDER - одна из возможных перестановок всех целых чисел от 1 до N, где N - размерность массива А;

    ipermuteCA, ORDER) - операция, обратная permute: permute(permute(A. ORDER), ORDER)=A

Ниже приводятся примеры применения этих функций и функции size:

» А=:

» В=;

» С=;

» D=cat(3.A,B.C)

D(:,:,l) =

9 10

11 12

» size(D)

Ans =

2 2 3

» size(permute(D.))

ans=

3 2 2

»size(ipermute(D.))

Ans=

2 2 3

» ipermute(permute(D,),)

Ans(:. :,2) =

ans(:.:,3) =

9 10

11 12

Сдвиг размерностей массивов

Сдвиг размерностей реализуется функцией shiftdim:

    B=shiftdim(X,N) - сдвиг размерностей в массиве X на величину N. Если М>0, то сдвиг размерностей, расположенных справа, выполняется влево, а N первых слева размерностей сворачиваются в конец массива, т. е. движение размерностей идет по кругу против часовой стрелки. Если М<0, сдвиг выполняется вправо, причем N первых размерностей, сдвинутых вправо, замещаются единичными размерностями;

    Shiftdim(X) - возвращает массив В с тем же числом элементов, что и у массива X, но с удаленными начальными единичными размерностями. Выходной параметр NSHIFTS показывает число удаленных размерностей. Если X - скаляр, функция не изменяет X , В, NSHIFTS.

Следующий пример иллюстрирует применение функции shiftdim:

» A=randn(1.2.3,4):

» =shiftdim(A)

B(:.:.l) =

2.1707-1.01060.5077

0.05920.6145 1.6924

B(:.:,2) =

0.5913 0.3803 -0.0195

0.6436-1.0091-0.0482

B(:.:.3) =

0.0000 1.0950 0.4282

0.3179-1.87400.8956

В(:.:,4) =

0.7310 0.0403 0.5689

0.5779 0.6771 -0.2556

Удаление единичных размерностей

Функция squeeze(A) возвращает массив, в котором удалены все единичные размерности. Единичной называется размерность, в которой size(A. dim) == 1. Но если

А - одномерный или двумерный массив (матрица или вектор), то функция вернет тот же самый массив А. Следующий пример поясняет работу squeeze:

» A=randn(1.2.1.3.1):

» B=squeeze(A)

0.6145 1.6924 -0.6436

0.5077 0.5913 0.3803

Обратите внимание на то, что пятимерный массив А превращается в массив с размерностью 2 и размером 2x3.

Что нового мы узнали?

В этом уроке мы научились:

    Создавать многомерные массивы.

    Применять оператор «:» в многомерных массивах.

    Получать доступ к отдельным элементам многомерных массивов.

    Удалять размерности у многомерного массива.

    Создавать массивы, заполненные константами и случайными числами.

    Осуществлять объединение массивов.

    Вычислять число размерностей массива и определять размер каждой размерности.

    Переставлять, сдвигать и удалять единичные размерности в многомерных массивах.